Training DCGAN model(detail)

#device name
import tensorflow as tf
if tf.config.list_physical_devices('GPU'):
device_name=tf.test.gpu_device_name()
else:
device_name='/CPU:0'
mnist_bldr = tfds.builder('mnist')
mnist_bldr.download_and_prepare()
mnist = mnist_bldr.as_dataset(shuffle_files=False)
def preprocess(ex, mode='uniform'):
image = ex['image']
image = tf.image.convert_image_dtype(image, tf.float32)
image = image*2 - 1.0
if mode == 'uniform':
input_z = tf.random.uniform(
shape=(z_size,), minval=-1.0, maxval=1.0)
elif mode == 'normal':
input_z = tf.random.normal(shape=(z_size,))
return input_z, image
num_epochs = 100
batch_size = 128
image_size = (28, 28)
z_size = 20
mode_z = 'uniform'
lambda_gp = 10.0
tf.random.set_seed(1)
np.random.seed(1)
##
mnist_trainset = mnist['train']
mnist_trainset = mnist_trainset.map(preprocess)
mnist_trainset = mnist_trainset.shuffle(10000)
mnist_trainset = mnist_trainset.batch(
batch_size, drop_remainder=True)
##
with tf.device(device_name):
gen_model = make_dcgan_generator()
gen_model.build(input_shape=(None, z_size))
gen_model.summary()
disc_model = make_dcgan_discriminator()
disc_model.build(input_shape=(None, np.prod(image_size)))
disc_model.summary()
import time
## :
g_optimizer = tf.keras.optimizers.Adam(0.0002)
d_optimizer = tf.keras.optimizers.Adam(0.0002)
if mode_z == 'uniform':
fixed_z = tf.random.uniform(
shape=(batch_size, z_size),
minval=-1, maxval=1)
elif mode_z == 'normal':
fixed_z = tf.random.normal(
shape=(batch_size, z_size))
def create_samples(g_model, input_z):
g_output = g_model(input_z, training=False)
images = tf.reshape(g_output, (batch_size, *image_size))
return (images+1)/2.0
all_losses = []
epoch_samples = []
start_time = time.time()
for epoch in range(1, num_epochs+1):
epoch_losses = []
for i,(input_z,input_real) in enumerate(mnist_trainset):
with tf.GradientTape() as d_tape, tf.GradientTape() as g_tape:
g_output = gen_model(input_z, training=True)
d_critics_real = disc_model(input_real, training=True)
d_critics_fake = disc_model(g_output, training=True)
## :
g_loss = -tf.math.reduce_mean(d_critics_fake)
## :
d_loss_real = -tf.math.reduce_mean(d_critics_real)
d_loss_fake = tf.math.reduce_mean(d_critics_fake)
d_loss = d_loss_real + d_loss_fake
## :
with tf.GradientTape() as gp_tape:
alpha = tf.random.uniform(
shape=[d_critics_real.shape[0], 1, 1, 1],
minval=0.0, maxval=1.0)
interpolated = (
alpha*input_real + (1-alpha)*g_output)
gp_tape.watch(interpolated)
d_critics_intp = disc_model(interpolated)
grads_intp = gp_tape.gradient(
d_critics_intp, [interpolated,])[0]
grads_intp_l2 = tf.sqrt(
tf.reduce_sum(tf.square(grads_intp), axis=[1, 2, 3]))
grad_penalty = tf.reduce_mean(tf.square(grads_intp_l2 - 1.0))
d_loss = d_loss + lambda_gp*grad_penalty
## :
d_grads = d_tape.gradient(d_loss, disc_model.trainable_variables)
d_optimizer.apply_gradients(
grads_and_vars=zip(d_grads, disc_model.trainable_variables))
g_grads = g_tape.gradient(g_loss, gen_model.trainable_variables)
g_optimizer.apply_gradients(
grads_and_vars=zip(g_grads, gen_model.trainable_variables))
epoch_losses.append(
(g_loss.numpy(), d_loss.numpy(),
d_loss_real.numpy(), d_loss_fake.numpy()))
all_losses.append(epoch_losses)
print(' {:-3d} | {:.2f} min | >>'
' / {:6.2f}/{:6.2f} [-: {:6.2f} -: {:6.2f}]'
.format(epoch, (time.time() - start_time)/60,
*list(np.mean(all_losses[-1], axis=0)))
)
epoch_samples.append(
create_samples(gen_model, fixed_z).numpy()
)